268 research outputs found

    Exact discrete minimization for TV+L0 image decomposition models

    Get PDF
    International audiencePenalized maximum likelihood denoising approaches seek a solution that fulfills a compromise between data fidelity and agreement with a prior model. Penalization terms are generally chosen to enforce smoothness of the solution and to reject noise. The design of a proper penalization term is a difficult task as it has to capture image variability. Image decomposition into two components of different nature, each given a different penalty, is a way to enrich the modeling. We consider the decomposition of an image into a component with bounded variations and a sparse component. The corresponding penalization is the sum of the total variation of the first component and the L0 pseudo-norm of the second component. The minimization problem is highly non-convex, but can still be globally minimized by a minimum s-t-cut computation on a graph. The decomposition model is applied to synthetic aperture radar image denoising

    Sparse + smooth decomposition models for multi-temporal SAR images

    No full text
    International audienceSAR images have distinctive characteristics compared to optical images: speckle phenomenon produces strong fluctuations, and strong scatterers have radar signatures several orders of magnitude larger than others. We propose to use an image decomposition approach to account for these peculiarities. Several methods have been proposed in the field of image processing to decompose an image into components of different nature, such as a geometrical part and a textural part. They are generally stated as an energy minimization problem where specific penalty terms are applied to each component of the sought decomposition. We decompose temporal series of SAR images into three components: speckle, strong scatterers and background. Our decomposition method is based on a discrete optimization technique by graph-cut. We apply it to change detection tasks

    Patch similarity under non Gaussian noise

    No full text
    International audienceMany tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change detection or denoising. A fundamental difficulty when comparing two patches from "real" data is to decide whether the differences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption leads to the classical definition of patch similarity based on the squared intensity differences. When the noise departs from the Gaussian distribution, several similarity criteria have been proposed in the literature. We review seven of those criteria taken from the fields of image processing, detection theory and machine learning. We discuss their theoretical grounding and provide a numerical comparison of their performance under Gamma and Poisson noises

    Template Matching with Noisy Patches: A Contrast-Invariant GLR Test

    No full text
    International audienceMatching patches from a noisy image to atoms in a dictionary of patches is a key ingredient to many techniques in image processing and computer vision. By representing with a single atom all patches that are identical up to a radiometric transformation, dictionary size can be kept small, thereby retaining good computational efficiency. Identification of the atom in best match with a given noisy patch then requires a contrast-invariant criterion. In the light of detection theory, we propose a new criterion that ensures contrast invariance and robustness to noise. We discuss its theoretical grounding and assess its performance under Gaussian, gamma and Poisson noises

    How to compare noisy patches? Patch similarity beyond Gaussian noise

    No full text
    International audienceMany tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches (so-called image-based) compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change detection or denoising. Recent progress in natural image modeling also makes intensive use of patch comparison. A fundamental difficulty when comparing two patches from "real" data is to decide whether the differences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption leads to the classical definition of patch similarity based on the squared differences of intensities. For the case where noise departs from the Gaussian distribution, several similarity criteria have been proposed in the literature of image processing, detection theory and machine learning. By expressing patch (dis)similarity as a detection test under a given noise model, we introduce these criteria with a new one and discuss their properties. We then assess their performance for different tasks: patch discrimination, image denoising, stereo-matching and motion-tracking under gamma and Poisson noises. The proposed criterion based on the generalized likelihood ratio is shown to be both easy to derive and powerful in these diverse applications

    Fast strategies for multi-temporal speckle reduction of Sentinel-1 GRD images

    Full text link
    Reducing speckle and limiting the variations of the physical parameters in Synthetic Aperture Radar (SAR) images is often a key-step to fully exploit the potential of such data. Nowadays, deep learning approaches produce state of the art results in single-image SAR restoration. Nevertheless, huge multi-temporal stacks are now often available and could be efficiently exploited to further improve image quality. This paper explores two fast strategies employing a single-image despeckling algorithm, namely SAR2SAR, in a multi-temporal framework. The first one is based on Quegan filter and replaces the local reflectivity pre-estimation by SAR2SAR. The second one uses SAR2SAR to suppress speckle from a ratio image encoding the multi-temporal information under the form of a "super-image", i.e. the temporal arithmetic mean of a time series. Experimental results on Sentinel-1 GRD data show that these two multi-temporal strategies provide improved filtering results while adding a limited computational cost

    COMBINING PATCH-BASED ESTIMATION AND TOTAL VARIATION REGULARIZATION FOR 3D INSAR RECONSTRUCTION

    No full text
    International audienceIn this paper we propose a new approach for height retrieval using multi-channel SAR interferometry. It combines patch-based estimation and total variation regularization to provide a regularized height estimate. The non-local likelihood term adaptation relies on NL-SAR method, and the global optimization is realized through graph-cut minimization. The method is evaluated both with synthetic and real experiments

    PATCH-BASED SAR IMAGE CLASSIFICATION: THE POTENTIAL OF MODELING THE STATISTICAL DISTRIBUTION OF PATCHES WITH GAUSSIAN MIXTURES

    No full text
    International audienceDue to their coherent nature, SAR (Synthetic Aperture Radar) images are very different from optical satellite images and more difficult to interpret, especially because of speckle noise. Given the increasing amount of available SAR data, efficient image processing techniques are needed to ease the analysis. Classifying this type of images, i.e., selecting an adequate label for each pixel, is a challenging task. This paper describes a supervised classification method based on local features derived from a Gaussian mixture model (GMM) of the distribution of patches. First classification results are encouraging and suggest an interesting potential of the GMM model for SAR imaging

    Multi-temporal speckle reduction with self-supervised deep neural networks

    Full text link
    Speckle filtering is generally a prerequisite to the analysis of synthetic aperture radar (SAR) images. Tremendous progress has been achieved in the domain of single-image despeckling. Latest techniques rely on deep neural networks to restore the various structures and textures peculiar to SAR images. The availability of time series of SAR images offers the possibility of improving speckle filtering by combining different speckle realizations over the same area. The supervised training of deep neural networks requires ground-truth speckle-free images. Such images can only be obtained indirectly through some form of averaging, by spatial or temporal integration, and are imperfect. Given the potential of very high quality restoration reachable by multi-temporal speckle filtering, the limitations of ground-truth images need to be circumvented. We extend a recent self-supervised training strategy for single-look complex SAR images, called MERLIN, to the case of multi-temporal filtering. This requires modeling the sources of statistical dependencies in the spatial and temporal dimensions as well as between the real and imaginary components of the complex amplitudes. Quantitative analysis on datasets with simulated speckle indicates a clear improvement of speckle reduction when additional SAR images are included. Our method is then applied to stacks of TerraSAR-X images and shown to outperform competing multi-temporal speckle filtering approaches. The code of the trained models is made freely available on the Gitlab of the IMAGES team of the LTCI Lab, T\'el\'ecom Paris Institut Polytechnique de Paris (https://gitlab.telecom-paris.fr/ring/multi-temporal-merlin/)
    corecore